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A stationary potential-flow approximation for a 
breaking-wave crest 

By ALASTAIR D. JENKINS? 
The IBM Environmental Sciences and Solutions Centre, Bergen, Norway 

(Received 23 August 1993 and in revised form 4 July 1994) 

The flow in a breaking-wave crest is represented by a complex velocity potential on a 
Riemann surface, satisfying the Bernoulli condition on two free boundaries. The flow 
is assumed to be stationary in the reference frame which moves with the wave crest, 
and at large distances approximates Stokes corner flow in the main part of the fluid 
and a parabolic descending flow in the jet. The interaction of the jet with the rest of 
the fluid is neglected. 

The solution is obtained by means of a conformal transformation from a bounded, 
teardrop-shaped domain, using a Faber polynomial expansion. The Bernoulli condi- 
tion is applied at a number of discrete points on the boundaries, and the resulting 
nonlinear equations for the expansion coefficients are solved iteratively. The resulting 
surface form is similar to that obtained by laboratory experiments and time-dependent 
numerical simulations of waves up to the point of breaking, with a stagnation point at 
the top of the crest, an overturning loop with major axis NN 8g-i Y ?, and a maximum 
acceleration of = 5.4g, where g is the gravitational acceleration and Y is the flux in 
the jet. 

1. Introduction 
The present study was prompted by the observation that the form of the free 

surface in the crests of irrotational surface gravity waves on an incompressible fluid, 
at the point of breaking, appears to be very similar for many laboratory experiments 
(Miller 1957; Vinje & Brevig 1981; Dommermuth et al. 1988; Bonmarin 1989) and 
time-dependent numerical simulations (Longuet-Higgins & Cokelet 1976; Dold & 
Peregrine 1984; New, McIver & Peregrine 1985; Dommermuth et al. 1988; Seo & 
Dalrymple 1990; Dold 1992). This suggests that there is a basic similarity in the 
flow, which might be reproduced using a relatively simple approximation, and indeed 
a number of theoretical studies have produced simple analytical time-dependent 
descriptions of various parts of the flow in irrotational breaking waves (Longuet- 
Higgins 1976, 1980a,b, 1981, 1982, 1983; Greenhow 1983; New 1983). 

However, an alternative approach, used in the present paper, is to see whether the 
flow in a breaker can be approximated by a stationary flow pattern. An indication 
that this might be useful is given by the fluid particle accelerations shown in figure 
6(b) of Dommermuth et al. (1988), which, in the overturning loop on the underside 
of the jet, are directed approximately towards the centre of curvature of the surface, 
having magnitudes several times the gravitational acceleration g. This suggests that in 
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this region the free surface lies approximately along a streamline, so that a steady-flow 
approximation could be valid. 

Of course, if the flow is steady, the jet of the breaker will intersect the forward face 
of the wave, so that the complex velocity potential x will be defined on a Riemann 
surface which is different from a simple complex plane. In reality, the jet will mix 
turbulently with the rest of the fluid and air bubbles will be entrained, but it may be 
possible to treat these effects separately (e.g. Hwang, Poon & Wu 1991), and regard 
them as contributions to a ‘weak-in-the-mean’ process (Hasselmann 1974) which has 
just a small effect on the fluid motion elsewhere. The momentum of the fluid in the 
jet will be dissipated, so it will contribute to the loss of momentum from the wave 
field, and hence to the loss of wave energy. In this way an irrotational breaking crest 
will provide a contribution to wave energy dissipation which can be calculated ‘from 
first principles’ (cf. Jenkins 1994). 

Dias & Tuck (1993) computed such a breaking-wave flow pattern for a hydraulic 
jump in shallow water, commenting that the jet was assumed to fall ‘as if into a 
bottomless chasm’. Dias & Christodoulides (1991) computed a similar type of flow 
which represents a ship’s breaking bow wave. 

In $2.1 I present a potential flow which has the same topology as the flow in a 
breaking-wave crest of stationary form, has similar asymptotic behaviour at large 
distances, and satisfies the free-surface Bernoulli condition on a single streamline. 
This is then modified numerically in $2.2, to satisfy the Bernoulli condition on both 
free surfaces, the other surface containing a stagnation point. A numerical solution 
is presented in $2.3, and a discussion of the behaviour of the flow in the far field and 
the uniqueness of the flow is presented in $42.4-2.5. 

Though most breaking waves in the open ocean can be regarded as ‘spilling 
breakers’, and do not have the characteristic shape of a plunging breaker, shown in 
this paper, in time-dependent simulations, and in laboratory experiments, they can 
probably be regarded as being basically the same phenomenon except with a smaller 
length scale. The structure of the ‘irrotational’ part of the crest then becomes hidden 
by chaotic and turbulent motions, surface foam and sea spray. 

2. Quasi-stationary solution 
If a breaking-wave crest can be approximated by a stationary pattern of potential 

flow, we can think of such a pattern as approximating two different simpler flows at 
large distances, in different parts of the Riemann surface which represents the spatial 
coordinates (Re z ,  Im z ) .  In the main part of the fluid it will approximate Stokes 
corner flow, as in the case of the crest of an ‘almost-highest wave’ (Longuet-Higgins & 
Fox 1977). In the jet protruding from the crest it should approximate a flow in which 
the fluid particles are in free fall and execute parabolic trajectories. Various authors 
have published analytical and numerical treatments of two-dimensional potential flow 
in jets with free surfaces, influenced by gravity, and related phenomena (e.g. Bervi 
1894; Birkhoff & Carter 1956; Birkhoff & Zarantonello 1957; Clarke 1965; Gurevich 
1966; Keller & Geer 1973; Ting & Keller 1974; Geer & Keller 1979; Vanden-Broeck & 
Keller 1982,1986; Goh & Tuck 1985; Tuck 1987; Dias, Keller & Vanden-Broeck 1988; 
Feng 1988; Dias & Christodoulides 1991; Dias & Tuck 1993; Lee & Vanden-Broeck 
1993). The present treatment is similar to that of Longuet-Higgins & Fox (1977), but 
the free-surface boundary conditions are applied at discrete points, as in Birkhoff & 
Carter (1956, appendix D), Birkhoff & Zarantonello (1957), Vanden-Broeck & Keller 
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(1986, 1989), Dias et al. (1988), Dias & Christodoulides (1991), Dias & Tuck (1993) 
and Lee & Vanden-Broeck (1993). 

We let the real z-axis point vertically upwards and the imaginary axis point to 
the left, with the wave travel direction towards the right. Since we have steady, 
two-dimensional potential flow, the free surfaces are streamlines and the fluid velocity 
is given by the complex conjugate of the derivative of the velocity potential x: 

v = (dx/dz)*. (2.1) 

(2.2) 

On the free-surface streamlines we have the constant-pressure Bernoulli condition 

;lvl2 + Re z = const., 

where we choose length units so that g = 1. 

2.1. An exact solution 

The following complex velocity potential satisfies exactly the boundary condition (2.2) 
at a free surface which follows the streamline Im x = 0: 

x = -+ i  + 2i(z + 2) - $i(2(z + 2))3/2. (2.3) 

Part of the flow, which has the same topology as flow in a breaking wave crest, is 
shown in figure 1. The free-surface streamline Im x = 0, which is a parabola, is 
labelled AA’. The fluid occupies the region above this streamline (including the part 
above the line BSB’, where the streamlines have been omitted), where there are no 
singularities in x. Below AA’ there is a branch point singularity at z = -2. This flow 
can be derived by analytic continuation of a velocity potential which describes the 
flow along AA’ in which fluid particles are in free fall under the influence of gravity, 
with velocity component -1 in the Im z direction, (cf. John 1953). 

The streamline Im x = Y = $ has a stagnation point S at z = 0, where Re x = 0. 
This streamline then splits into two parts, S B  and SB’. Although the Bernoulli 
condition is not satisfied on BSB’, we describe in $42.2-2.4 a modified flow pattern 
which does satisfy it on both surfaces. The surface S B  then corresponds to the rear 
part of a wave crest and SB’ to the upper surface of the jet, the flux in the jet being 
Y = i. The leading-order asymptotic behaviour of (2.3), x -   con st.)^^'^ as IzI + co, 
is the same as for Stokes corner flow except for the orientation and the constant of 
proportionality (Longuet-Higgins 1981). 

Flows of the form (2.3) with Y # +, still satisfying (2.2) on Im x = 0, may be 
obtained by multiplying x by i Y ,  and the horizontal and vertical length scales by 
(i Y)2 /3 ,  whereby the velocities are all multiplied by (1 Y)1/3. 

2.2. ModiJcation of the flow 

Equation (2.3) can be inverted, using the cubic equation formula, so that z can be 
expressed as a function of x. Care must be taken to choose the correct branch of 
the solution. In order to modify the flow (2.3) so that it satisfies (2.2) on both free 
surfaces, we displace z and multiply it by a polynomial series in a new complex 
variable Q. We call the new complex spatial variable Z ,  and we have 

a, 

z - zo = ( z  - zo)h(Q); h(Q)  = c wjpj(s2); (2.4) 
j=O 

where the relation between z and Q is given by (2.3), together with 

= l i  + 3n 2 -1 (-1 - b + bo + ieb-bO), (2 .5~)  
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FIGURE 1. A flow which satisfies the free-surface boundary condition on streamline AA'. Solid lines 
represent free surfaces of the wave crest (Im x = 0 , ; ) ;  broken lines represent interior streamlines 
(Im x = $, :). 

b = nu - log(+(I - eZa)), (231) 

and 
a = tan($n(Q - I)). ( 2 . 5 ~ )  

Note that the relation between z and x is kept fixed, being given by (2.3). In the 
complex b-plane, the fluid occupies the strip IIm bl d in ,  with the stagnation point 
at b = bo - +in. The constants bo and zo can be adjusted as required, and Zo is 
determined by the condition that the stagnation point S is at Z = 0. Figure 2 shows 
streamlines in the complex 0-plane for bo = -4.5. The fluid fills the teardrop-shaped 
domain T ,  and the free surfaces follow its boundary dT .  The p j ( 0 )  in (2.4) are Faber 
polynomials, as defined in $18.2 of Henrici (1986), and can be evaluated from the 
coefficients of the Laurent series expansion of the conformal mapping Q = y(w) of 
the exterior of the unit circle 

(2.6) it? o = e  , 0 E (-n,n], 

onto the exterior (complement) of T .  Faber polynomials provide a way of constructing 
uniformly convergent series approximations for functions defined in simply connected, 
compact domains in the complex plane, in a similar way to the construction of Taylor 
series approximations for functions in circular domains. 

According to theorem 18.2a of Henrici (1986), the series Cy wjpj(s2) is uniformly 
convergent in T if h is analytic in an open set containing T .  Since the boundary dT 
of T is a Jordan curve with bounded rotation and its only corner has an exterior 
angle (at s2 = -1) which is non-zero, Henrici's lemma 18.2d implies that the p j ( 0 )  
are bounded within T and on dT ,  as j -+ co. Also, the coefficients w j  are equal 
to the corresponding Fourier coefficients with respect to 8 of h(y(ei8)). The Faber 
polynomial expansion can then be extended to include functions h which are analytic 
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I 
FIGURE 2. Flow in the Q-plane. The teardrop-shaped domain T is filled with fluid, and the 

streamlines with Im x = 0, $, and are shown. 

in the interior of T and have absolutely convergent Fourier series for h(y(ei8)) on 
y(eie) E i3T. In $2.4 I show that this is the case for h = ( Z  -ZO)/(Z - 2 0 )  in the current 
problem. 

The series (2.4) thus converges in the interior of T and on its boundary dT, in a 
similar way to the convergence inside and on the circle 1 0 1  = 1 of the power series of 
Longuet-Higgins & Fox (1977, equation 6.4). It is necessary to use a teardrop-shaped 
domain rather than a circle, because for a circular domain the mapping of the flow in 
the region of the jet has logarithmic behaviour and the convergence is unacceptably 
slow. The required conformal mapping was computed numerically using the fast 
Fourier transform method of Wegmann (1978), as described by Henrici (1986, $16.9). 
Note that there are some errors in Henrici’s presentation, in the first three equations 
on p. 418, and in the formula for A(s) on p. 422. Since Wegmann’s method is directly 
applicable only to domains with smooth boundaries, it was applied for the mapping 
from the exterior of the unit circle to the exterior of a smooth curve in the plane 
of another complex variable E.  This curve becomes the boundary dT of T in the 
S2-plane under the Joukowski map 

To obtain good convergence with Wegmann’s method, it was necessary to use a large 
number of points on the boundary: the computations reported in this paper used 
2048 points. 

The expansion (2.4) is substituted into the free-surface Bernoulli condition written 
in the following form : 

IQ-S2ol2 ((Z+Z*)-& dZ ( - & ) * + 1 )  dZ =o,  

where QO is the value of S2 at the stagnation point S .  The factor 10 - sZ01~ is 
applied in order to counteract the singularity of (dZ/dx)(dZ/dx)* at S .  Condition 
(2.8) is applied at a number of discrete collocation points Qj on dT. The points 
are an evenly distributed subset of those used in Wegmann’s method for the exterior 
conformal mapping. They become equally spaced if we map the exterior of T onto 
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FIGURE 3. Flow which represents a breaking-wave crest of constant form. It satisfies the free-surface 
boundary condition at 128 points on the surface. The circle marks the position of maximum fluid 
acceleration (= 5.4g). The length scale is adjusted so that the flux through the jet and the intervals 
between the streamlines shown have unit magnitude; using dimensional variables, the length unit is 
L = g-'/3'P2/3, where 'P is the flux through the jet. 

the exterior of the circle (2.6). The collocation points extend well out into the jet 
region near L) = -1 :  this would not be the case if a circular domain were used, with 
a logarithmic mapping of the flow in the jet region, as in Birkhoff & Carter (1956j, 
Birkhoff & Zarantonello (1957), Vanden-Broeck & Keller (1986), Dias et al. (1988), 
Dias & Christodoulides (1991), Dias & Tuck (1993), and Lee & Vanden-Broeck 
(1993). For 2n points along the boundary, we obtain 2n nonlinear equations in 2n 
unknowns if we use Faber polynomials P O . .  . pn-l ,  the unknowns being the real and 
imaginary parts of the complex coefficients wo . . . wnP1. The equations were solved 
using the subroutine COSPBF of NAG (1990), which employs an iterative technique - 
a modification of the Powell hybrid method. 

2.3. Solution for the flow 

With zo = 3.5, bo = -4.5, and 128 solution points, we obtain the flow shown in figure 
3. The scaling relation between the length and velocity scales and the flux in the jet 
Y ,  described at the end of $2.1, applies to this flow, and the length scale has been 
changed so that the non-dimensional flux of fluid in the jet has magnitude 1 instead 
of ;. In dimensional variables, the length unit is equal to L = g-1/3Y2/3. The fluid 
has maximum acceleration of approximately 5.4g on the underside of the crest, at 
the point marked with the circle. 

Where the jet intersects the forward surface of the wave, the fluid velocity is = 3.6V, 
where I/' = (gY j1'37 and the horizontal component of the jet velocity is = 1.2V. The 
relative speed of the fluid in the jet with respect to the fluid at the front wave surface 
is = 6.9V. 

The free surface is oriented horizontally at the stagnation point S ,  which is thus 
at the maximum height the fluid reaches. The free surface must be horizontal at S ,  
since 1vl2 - (const.)lZ12 as (ZI --+ 0 if we locate S at Z = 0, from which the Bernoulli 
condition requires that Re Z - (const.)lZI2 on the surface. 

If varying values of the adjustable parameters (number of points, bo, zoj are used, 
the geometrical dimensions of the resulting numerically calculated flow vary by about 
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l------ 
I 

FIGURE 4. Hodograph of the velocity at the free surface, for the flow of figure 3. The circles 
mark the computed values. The surface AA' corresponds to the forward face of the wave and the 
underside of the jet, S B  to the rear face of the wave and SB' to the upper surface of the jet. The 
units of velocity are (gY) ' I3 .  

+5%. Bearing in mind that the assumption that the flow is stationary and irrotational 
is a radical simplification of the physical situation, this inaccuracy is acceptable. The 
inaccuracy may be due to somewhat poor convergence of the polynomial expansion : 
in $2.4 it is shown that the behaviour of h = (Z  - ZO)/(Z - ZO)  as jz/ --+ 00 is 
such that the polynomial series for dh/dO, which is used in computing the surface 
boundary condition (2.8), is not convergent on dT, although its behaviour appears 
to be acceptable for small to moderately large values of IzI. 

The velocity at the free surface in the flow of figure 3 is shown in hodograph form 
in figure 4. The velocity values obtained by direct application of (2.1) had some 
saw-toothed oscillations, probably due to the divergence of the polynomial series for 
dh/dO. The amplitude of these oscillations was reduced by applying a three-point 
smoothing formula and then scaling the result so that it still satisfied the Bernoulli 
condition, so we obtain the following formula for smoothed velocities Zj from the 
computed positions Z j  and velocities vj: 

In the jet region, the velocity converges to a vertical asymptote, indicating that the 
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FIGURE 5. Accelerations at the free surface, for the flow of figure 3. The tails of the arrows are at 
the computed positions. 

flow tends towards free fall under gravity. On the forward and rear faces of the 
wave, the velocity converges to asymptotes with slopes of +30", as in Stokes corner 
flow. These asymptotes do not actually go through the origin, so that the direction 
of the acceleration vector converges more rapidly to its Stokes corner flow value 
than the velocity vector does. The zero velocity, in the current frame of reference, 
at the stagnation point S, becomes a horizontal velocity equal to the phase velocity 
of the wave in an absolute frame of reference. This is confirmed in laboratory 
measurements of breaking waves by Sawada & Tomita (1994), which show large, 
horizontally directed velocity vectors in the region near the top of the crest. 

Figure 5 shows the acceleration at the free surface near the wave crest. The 
saw-toothed behaviour of the acceleration computed directly from the polynomial 
expansion was unacceptably great, so smoothed values ;ij were calculated using finite 
differences: 

(Note that the expression is valid when ( x j + 2  - ~ j - 2 )  is real, i.e. when the points 
( Z j - 2 , . . . Z j + 2 )  are all on the same surface and all lie on the same side of the 
stagnation point S.) 

In the jet, the acceleration tends toward the value l.Og, directed vertically down- 
wards. The greatest accelerations are near the top of the loop on the underside of the 
crest, the maximum magnitude being NN 5.4 g .  

2.4. Behaviour of the flow in the f a r  jield 
Figure 6 shows the behaviour of the flow at large distances from the crest. The 
forward and rear faces of the wave can be seen to converge quite well to straight 
lines inclined at +30" to the horizontal, except for the two outermost computed 
points. This is in spite of the fact that the corresponding streamlines in the flow of 
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FIGURE 6. Behaviour at large distances, for the flow of figure 3. The circles show the computed 
positions, and are reduced in size where they are close together, so that they do not overlap. The 
broken lines, put in for comparison, have slopes of +30". 

figure 1 are not asymptotic to straight lines, the surface AA' being a parabola. Hence 
the numerical solution for the function h(SZ) in (2.4) provides a reasonably good 
correction to the shape of the surface streamlines. The departure of the outermost 
two points from the asymptotes reflects the singularity of h(SZ2) at SZ = 1. 

For Stokes corner flow we have Z = -(--;i~)~/~. In the present case, however, the 
presence of the jet requires us to have a source of fluid at infinity. To determine the 
behaviour of the flow in the far field we thus need to consider flows of the form 

(2.11) 

where K is a correction, becoming small with regard to the other terms as 1x1 + co, 
which enables (2.11) to satisfy the Bernoulli condition on the free surface. Note that 
if IC --+ 0, the free surfaces (x = 4 + O.i, 4 + -a) and (x = 4 + ti, 4 + +a) become 
asymptotic to straight lines which pass through Z = 0 and are inclined at f30" to 
the horizontal. 

z = - [-ii(x - :i + -n : -1 log + ~1 2/3, 

The Bernoulli condition ( Z  + Z*)(dZ/dX)(dZ/dx)* + 1 = 0 implies that 

- [(-+i(X - i i  + +-' log x + K ) )  113 (2i(x* 3 + :i + ;n-l log x* + K * ) ) - ' I 3  + c.c.1 

on the free-surface streamlines, where 'c.c.' represents the complex conjugate of the 
previous term and (..-)* represents the complex conjugate of the previous factor in 
parentheses. 

We now introduce a new variable 

7 = (x - f i  + in-1 logx)-l, (2.13) 

which tends to zero as 1x1 + co. In the neighbourhood of z = 0, the fluid occupies the 
lower half-plane, and the free surface approximates the real z-axis. The free-surface 
condition can then be written as 
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dti 
dz 

x (1 + ;n-'z + h.0.t. - - ( T - ~  + h.0.t.)) (. . .) * + 1 = 0 (Im z = 0), (2.14) 

where 'h.0. t.' means 'higher-order terms'. 
Expanding (2.14) and neglecting terms of higher order than z, we find that 

d 1 zP2-(Re K )  - ?z Re K = 3 n - l ~  
dz 

(2.15) 

on the real z-axis. This has solutions of the form 

ti = (const.) exp( hz4) - 2n-', 

so K = O(1) in the neighbourhood of z = 0; hence the free-surface streamlines are 
asymptotic to straight lines inclined at &30" to the horizontal, and we can write 

z = -(A. 2~x)2'3(1 + ~ ( x - '  logx)) as 1x1 -+ a. (2.16) 

We can now relate the above asymptotic behaviour of Z ( x )  to the flow (2.3) shown 

(2.17) 

in figure 1. From (2.3) we find that in the main part of the fluid, as 1x1 + co, 

z = Le21n/3 ( - 3 i ~ ) ~ / ~  [ 1 + o(x -~ /~ ) ] .  

Hence, 

= 21/3e1n/3[i + O((Q - I ) ' /~ ) ]  as Q -+ 1; 

= 21/3e1n/3 [ 1 + 0(0'/3)] as 8 + 0. (2.18) 

An argument similar to the one above shows that in the jet region, as SZ -+ -1 and 

h = 1 + O ( X - ' / ~ )  = 1 + O ( ( Q  + l p 3 )  = 1 + O((0 f 7~)~'~). (2.19) 

Thus, h is continuous on 3 T ,  and has an absolutely convergent Fourier series with 
respect to 8. Hence the Faber polynomial series for (Z-Z~) / ( z -zo)  should converge to 
a flow which resembles Stokes corner flow, with the free-surface streamlines asymptotic 
to straight lines inclined at +30" to the horizontal. However, dh/dQ = O ( ( Q  - 1)-2/3) 
as Q -+ 1, so when it is expressed as a function of 8 it has a singularity which is 
not square-integrable. This means that the expression for the fluid velocity contains 
a divergent series, and so does (2.8). In practice, the numerical solution method used 
in this paper nevertheless gave reasonable results when up to 128 terms were used in 
the series, corresponding to d 256 collocation points on the free surface. 

0 -+ s_n: 

2.5. Uniqueness of the flow 
I have assumed that the flow is unique, given the position of the stagnation point 
S, and the flux Y which determines the length and velocity scales (L = g- ' / 3Y2 /3 ,  
I/ = (gY)'I3). Trivial modifications include reflection in a vertical plane and reversal 
of the flow direction. I do not have a rigorous proof of uniqueness, but uniqueness is 
suggested by analogy with various other free-surface flows. 

The 'almost-highest wave' inner solution of Longuet-Higgins & Fox (1977) depends 
on a single parameter, the velocity at the crest. Varying this velocity just changes 
the geometrical scale of the flow, as in the present case when Y is varied. The 
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present case of a breaking wave crest could be considered as an inner solution for a 
'just-greater-than-highest' wave. 

For a jet rising and falling under gravity, in the limiting case which has a 120" stag- 
nation point at the crest (Vanden-Broeck & Keller 1982), the solution is determined 
by the flux in the jet, and varying the flux also just changes the scale. The same 
applies for the breaking wave in shallow water with a stagnation point at infinity, 
studied by Dias & Tuck (1993). 

The flow past an inclined surfboard on the rear face of a solitary wave (Ting & 
Keller 1974; Vanden-Broeck & Keller 19891, which may have a jet thrown up at the 
leading edge of the board, appears to depend on three parameters: the flux in the 
jet, the angle of inclination of the board, and the length of the part of the board in 
contact with the fluid. If the flux in the jet is fixed, the number of free parameters is 
reduced to two, and if the length of the board is then reduced to zero, the inclination 
angle of the board must necessarily become zero since the surface must be horizontal 
at the stagnation point. The number of free parameters is thus reduced to zero, 
and the present breaking-crest flow should be reproduced in the limit as the bottom 
recedes to an infinite distance below the crest. 

3. Conclusion 
An approximate model for a breaking-wave crest has been presented, which assumes 

that the flow is incompressible, irrotational and steady. It neglects the interaction of 
the jet of the breaker with the fluid in the forward face of the wave. The flow is 
computed using conformal transformations, employing a Faber polynomial expansion 
in a transformed domain of finite extent, and applying the Bernoulli condition at 
a number of collocation points on the free surface. The resulting shape of the 
breaker is similar to those observed in laboratory experiments and time-dependent 
numerical computations at instants prior to the jet plunging through the interface. 
The maximum acceleration of = 5.4g on the underside of the crest is in agreement 
with time-dependent computations (e.g. Dommermuth et al. 1988). 

By analogy with some other free-surface flows, the solution appears to be unique if 
the flux Y through the jet is specified. Changing Y or the gravitational acceleration 
just alters the length and velocity scales of the flow. The solution may perhaps be 
regarded as a limiting case of the flow, with a jet, past a surfboard on the rear face 
of a solitary wave (Vanden-Broeck & Keller 1989). 

The simple model presented here has been applied to the calculation of the wave 
energy dissipation due to breaking crests (Jenkins 1994). It can also be used in the 
calculation of forces on fixed and floating structures, mixing, the entrainment of air 
bubbles, particle deposition from the atmosphere, and so on. For calculating mixing 
and entrainment effects, it may be possible to consider the effect of the jet separately, 
and thus apply the results of laboratory experiments with artificial jets (e.g. Hwang 
et al. 1991). 

The solution method which is employed here, using a Faber polynomial expansion 
in a non-circular domain, might be applied to other free-surface flow problems. As 
well as for jets, it could be used in the investigation of Rayleigh-Taylor instability (cf. 
Birkhoff & Carter 1956; Meiron, Orszag & Israeli 1981; Menikoff & Zemach 1983; 
Zemach 1986). 

I would like to thank Howell Peregrine and three anonymous referees for con- 
structive criticism which helped to improve the manuscript. The revised manuscript 
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